For rotation by an angl
e θ clockwise about the origin, the functional form is x' = xcosθ + ysinθ and y' = − xsinθ + ycosθ. Written in matrix form, this becomes:
Similarly, for a rotation counter-clockwise about the origin, the functional form is x' = xcosθ − ysinθ and y' = xsinθ + ycosθ and the matrix form is:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg0WX7FYQSPrb5B_OWIeClVkdU9jI2qw9sB3Xx9Ym_bD3SQe8Np3G5xx5Cx73OKaMdnBX-obBAKPFFoLql6I84hp0S6x3Zc_8zJhrRc3PRqp6tjnbktm3OJPS4914hUen3yyiv4NPeLuPM/s320/lon.png)
[edit] Scaling
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEhfbBaYu9yoUygQCYaZLlaegY5wWiJH8SnQurT3-4x43SyyaFcZNSL5TJrT_ZO5m1XZnQlm7iC_mi1LRs2JgeuBEUQtQfJ2L8DxeFztnv4DdxhjLgP-cgNrHh4L89qmymh3rjE9ldnZIU0/s320/lin.png)
Similarly, for a rotation counter-clockwise about the origin, the functional form is x' = xcosθ − ysinθ and y' = xsinθ + ycosθ and the matrix form is:
![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEg0WX7FYQSPrb5B_OWIeClVkdU9jI2qw9sB3Xx9Ym_bD3SQe8Np3G5xx5Cx73OKaMdnBX-obBAKPFFoLql6I84hp0S6x3Zc_8zJhrRc3PRqp6tjnbktm3OJPS4914hUen3yyiv4NPeLuPM/s320/lon.png)
[edit] Scaling
Dear Majd,
ReplyDeleteNo TITLE for your post!! Very small post..and where is the reference??
Can you fix it?
Thanks, Zeina